The Most Deadly Magic Carpet Ride

By Allison Kubo Hutchison

USGS: Pyroclastic flow at Mount Saint Helens on August 7, 1980.

The volcano erupts. The immense pressure within the volcano due to the build-up of gases causes fragmentation. The thicker and more viscous the magma the more fragmentation occurs (Read more about that here). The fragmented magma cools into sharp, glasslike ash and larger blocks. It hurtles out of the volcano and forms a pyroclastic flow.

Of all volcanic hazards, pyroclastic flows are the most deadly. They are extremely fast-moving, deceptively so. The thick opaque billows that accompany a flow hide the fast-moving avalanche that makes up the core of the flow. They are also very hot, ranging between 100 C to 500 C. Due to the high vapor content within them and their high velocity even “low” temperatures can be fatal for humans. In some eruptions, the flows have been able to penetrate homes, moving under doors and through ventilation, killing those inside and outside due to the immense heat and choking gas. The only way to survive a pyroclastic flow is to avoid it. Avoiding it isn’t easy since they can travel at speeds of up to 100 km/hour. Their high speed coupled with passing over obstacles such as valleys or hills has been a mystery.

Recent research highlights that these flows are able to flow on top of a layer of heated gas, elevated from the ground just like a magic carpet. Researchers call it “air lubrication” which acts to reduce the friction that these flows feel. As the flow races down a hill, the shear decreases the pressure at the base of the head of the flow. This decrease in pressure in turn causes gases to enter that area creating a local area of low ash concentration which lowers the friction. However, as the friction lowers the speed and thus shear increases and leads to a positive feedback mechanism which further increases the pyroclastic flow’s speed.

This phenomenon might explain the extreme distance that has been observed in ancient eruptions. Looking at the deposits of pyroclastic flows some super-eruptions in the past have had flows that traveled 100s of kilometers and deposited meters of ash in their wake. A better understanding of the complex physics within these flows will lead to increased hazard prediction and mitigation

What happens when several thousand distinguished physicists, researchers, and students descend on the nation’s gambling capital for a conference? The answer is “a bad week for the casino”—but you’d never guess why.
Lexie and Xavier, from Orlando, FL want to know: “What’s going on in this video ? Our science teacher claims that the pain comes from a small electrical shock, but we believe that this is due to the absorption of light. Please help us resolve this dispute!”
Even though it’s been a warm couple of months already, it’s officially summer. A delicious, science-filled way to beat the heat? Making homemade ice cream. (We’ve since updated this article to include the science behind vegan ice cream. To learn more about ice cream science, check out The Science of Ice Cream, Redux ) Image Credit: St0rmz via Flickr Over at Physics@Home there’s an easy recipe for homemade ice cream. But what kind of milk should you use to make ice cream? And do you really need to chill the ice cream base before making it? Why do ice cream recipes always call for salt on ice?

Products You May Like

Articles You May Like

Live Video from the International Space Station (Official NASA Stream)

Leave a Reply

Your email address will not be published. Required fields are marked *